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a b s t r a c t

Building on the first part of this series regarding descriptive statistics, this paper demonstrates why it is
advantageous for radiographers to understand the role of inferential statistics in deducing conclusions
from a sample and their application to a wider population. This is necessary so radiographers can
understand the work of others, can undertake their own research and evidence base their practice. This
article explains p values and confidence intervals. It introduces the common statistical tests that
comprise inferential statistics, and explains the use of parametric and non-parametric statistics. To do
this, the paper reviews relevant literature, and provides a checklist of points to consider before and after
applying statistical tests to a data set. The paper provides a glossary of relevant terms and the reader is
advised to refer to this when any unfamiliar terms are used in the text. Together with the information
provided on descriptive statistics in an earlier article, it can be used as a starting point for applying
statistics in radiography practice and research.

� 2010 Published by Elsevier Ltd.

Introduction

As health care professionals, radiographers are commonly
exposed to statistics; the application of statistics is important to
clinical decision making.1e4 In a study undertaken by Welch and
Gabbe of papers from the American Journal of Obstetrics and
Gynaecology, more articles, 31.7%, were classified as having inap-
propriate testing than those 30.3% using appropriate testing.5

Furthermore in an article by Reznick it was shown that someone
only understanding descriptive statistics has only 44.5% access to
the data presented, whilst those with a more advanced repertoire
(i.e. knowledge of t-tests, contingency tables, and some non-para-
metric tests) increases the access rate to 80.5%.6 Hence, education
of writers of research on how to undertake and present statistical
testing must take place such that the work is accessible to readers,
which 90% of Reznick’s sample concurred with.6,7 It is found to be
most effective in the teaching of these statistics if the learners first
understand the concepts behind statistics prior to being taught
“how to undertake” them.8 This is a daunting task but one that is
essential in order that e.g. radiographers may gain the best value
from statistics.4,9,10 It is important in teaching statistical testing that
it appears relevant to the students e.g. by testing data relevant to
clinical decision making.11

Many statistical methods used by researchers do not only
describe the data but also enable conclusions to be drawn about the
populations fromwhich the samples are taken. They can be applied
to compare two or more samples with each other to investigate
potential differences and they can also be used for studying the
relationship between two or more variables. Such statistics are
inferential statistics, which are used to infer from the sample group
generalisations that can be applied to a wider population. This
allows the detection of large or even small, but important differ-
ences, in variables or correlations between variables that are rele-
vant to a particular research question.1e3 It is of paramount
importance to ensure that the sample that has been selected is
representative and this is determined predominantly by an
appropriate sampling method.2 If, for instance, a researcher wants
to test two different courses of radiotherapy as a cancer treatment,
by testing a long course versus a short course, then there are
different ways to decide onwho is selected for this study. There are
also different ways to decide who receives which treatment. When
deciding who will be sampled (selected) and received (allocated)
which treatment, if one wants to be certain that the characteristics
of subjects e in this case patients e does not affect the chance of
being allocated to a certain group then both random selection and
allocation should be applied. Random selection and random allo-
cation, generally also known as randomization, can be achieved by
simply tossing a coin or by using a computer programme (www.
randomizer.org). What is important here is that the patients are
selected, for example from a patient list, by chance and the patients
are also allocated to one of the treatments by chance. Often
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randomization is not feasible, for example when certain exclusion
criteria apply in a controlled trial or when only patients from
a certain region or country are included in a study. Bias can be
introduced in instances where the selection or allocation is not
truly randomized. Careful consideration of the sample used and the
way that subjects are compared with each other is therefore war-
ranted, well before any statistical test is applied to the data
generated.2,11

Terms used in inferential statistics

Before covering the different tests that can be applied for data
sets and measurements, it is essential to introduce some of the
common terms used. Inferential statistics measures the signifi-
cance, i.e. whether any difference e.g. between two samples is due
to chance or a real effect, of a test result. This is represented using p
values. The type of test applied to a data set relies on the sort of data
analysed, i.e. binary, nominal, ordinal, interval or ratio data; the
distribution of the data set (normal or not); andwhether a potential
difference between samples or a link between variables is studied.
Readers can refresh themselves regarding the terms nominal,
ordinal and interval/ratio data and discrete and continuous vari-
ables at this point, by consulting the earlier article in this series.

p values and power

A p value is the product of hypothesis testing via various
statistical tests and is claimed to be significant (i.e. not due to
chance) most commonly when the value is 0.05 or less. The value
0.05 is arbitrary; it is simply a convention amongst statistician that
this value is deemed the cut off level for significance.12 The p value
that is considered significant can be and is often varied by the
researchers, and it demonstrates the probability of making a type I
error i.e. an error created by rejecting the null hypothesis i.e. that
there is no difference in the amount of contrast induced-nephro-
toxicity between two contrast agents, when it is in fact true i.e. that
there is no difference between the two agents in this regard. Thus it
concludes there is a difference, when this is not true, giving a false
positive result.13 The p values say nothing about what the size of an
effect is or what that effect size is likely to be on the total pop-
ulation. Often, p values can be misleading because even the
smallest effect e.g. in the use of two contrast agents, can be made
significant by increasing the sample size. Equally a large and
important difference can prove to be of no significance if a small
sample size is used. The latter is a false-negative (Type II) error,
where the null hypothesis is accepted when in fact it should be
rejected. Many authors now report the confidence interval as well
as the p value, or indeed on its own, and some authors go as far as
saying that a paper reporting only a p value is suspect.7,14

The type II error is implicated in deciding on the sample size
used for a study. The required sample size can actually be calculated
before conducting a study. In order to do so, using freeware pro-
grammes such as GPower or other available programmes, a number
of parameters need to be predetermined. The type of statistical test
that is planned needs to be known and also the effect size. The
effect size is by how much you anticipate or hypothesize outcome
measurements, e.g. survival, side-effect incidence or tumour
volume reduction in two types of radiotherapy treatments, to differ
between each other. Then the allowed type I error, the p value that
is considered significant in this study, and the power of the study (1
e type II error), need to be determined. As mentioned previously,
the p value is often set at 0.05; power can be anything from 0.80
(80%) to 0.99 (99%) depending on requirements. Undertaking such
calculations will avoid too many subjects being recruited for
a study. A drawback is that a-priori power calculations do not take

variation of data into account, although this can be accounted for to
some extent by estimating the sample size for a number of effect
sizes and power levels.

Confidence interval and standard error

If the total population of e.g. patients suffering contrast-induced
nephrotoxicity, were studied, then that statistic would also be the
population parameter. The confidence interval is a measure of the
researchers’ uncertainty in the sample statistic as an estimate of the
population parameter, if less than the whole population is studied.
This is because the study result is not precisely the effect in the
population; consequently it is necessary to estimate a range of
values within which the true or precise effect in the whole pop-
ulation probably lies. This is ‘probably’, because it is never certain
that this is in fact the case. Generally, if there is a 95% probability
that something is the case, then that is generally accepted as good
enough to be accepted. Again, as with the p value, confidence
interval levels are usually set at 95% by convention. A 95% confi-
dence interval is the estimated range of values within which it is
95% possible or likely that the precise or true population effect
lies.7,13 Confidence intervals are a pivotal tool in evidence-based
practice, because they allow study results to be extrapolated into
the relevant population. In the calculation of this, three elements
are considered:

1) The standard errore whilst standard errors shrink with
increasing sample size, the researcher should be seeking to
reach an optimal sample size, rather than the maximal sample
size. Testing more subjects than required in a clinical trial may
not be ethical and in addition it would be awaste of money and
resources.

2) The mean and the variability, i.e. standard deviation, of the
effect being studied e the less variability in the sample, the
more precise the estimate in the population and therefore
a narrower range.

3) The degree of confidence required e the more confident
someone wants to be in the obtained results, the higher the
confidence interval needs to be. In other words, if a 99%
confidence interval is desired then the range will have to be
wider, to cover the extra data that needs to be covered over and
above the arbitrary 95%, to ensure that it is possible to be more
confident that the average for the population (the population
mean) lies within it.7,15 Conversely, if a 90% confidence interval
is considered sufficient then the range of data required will be
narrower, and hence the required sample size will be smaller.

To further illustrate the above, one needs to appreciate the
formulae associated with calculating confidence intervals. If a large
sample size is used and the distribution of the measurements/
observations shows a normal distribution, we can assume that the
variance in the sample is representative of the variance in thewider
population. The formulaic relationship between the confidence
interval (CI) standard error (SE) in such instances is: 95%
CI ¼ sample mean � 1.96 SE. The standard error of a sample equals
the standard deviation of the sample divided by the square root of
the sample size (SE¼ SD/On). Therefore, if the standard deviation is
large and the sample size small, the standard error will be large,
and vice versa. The standard deviation and standard error are very
easily mixed up. A standard deviation says something about the
variation around the mean of the actual sample, whereas the
standard error gives information on the variation one could theo-
retically expect in the sample mean if the experiment was repeated
with a different sample. The confusing part is that the standard
error is actually a measurement of variation e it is the variation of
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the mean itself (e.g. average percentage of nephrotoxicity cases in
a group of patients), not around the mean, that you can expect if
you would repeat your experiment with a different group of
patients.16,17

Data amenable to the use of parametric statistics

Firstly, please note that data should not be subjected both to
parametric and non-parametric testing. It is necessary for the
researcher to decide which method will be most appropriate given
the level and distribution of the data, and the types of statistical
tests that are that can be performed (see previous article). If data
shows a normal distribution, then tests such as one way analysis of
variance (ANOVA) and the paired and unpaired t-tests can be
applied for ratio and interval data. If parametric statistical testing is
used, the following characteristics of the data need to be checked to
ensure they fulfil the requirements below. Deciding which test to
apply is also subject to personal preference and the researcher’s
own judgement. Therefore, the pointers below can be used for
guidance and are certainly not exhaustive.

Generally speaking data should:

� Be approximately normally distributed. As usually it is not
known whether a whole population that is being sampled is
normally distributed the sample data must be examined when
considering this question. Data with an underlying normal
distribution exhibits a bell-shaped frequency distribution, so it
is useful to create a frequency histogram of each sample. Most
statistical programs can generate frequency histograms in
which the distribution of values can be compared with a curve
representing the normal distribution. Other ways of deter-
mining if samples are normally distributed are beyond the
scope of this article but include normal probability plots and
tests for normality such as the KolmogoroveSmirnov test, Lil-
liefors test and a chi-square goodness-of-fit test.18 If it is still
unclear whether the data are normally distributed after
examining these plots and tests then the most appropriate
solution may be to conduct a non-parametric test as these are
more conservative than parametric tests.

� Exhibit equality of variance. This is also known as uniform
variance or homogeneity of variance. In other words: are the
standard deviations for the samples similar? There are several
tests that can be used for determining equality of variance such
as the F-test and the Levene test. Knowing the equality of
variance will allow the application of an appropriate statistical
test.

Data amenable to the use of non-parametric statistics

Non-parametric statistical tests are used for binary, ordinal or
nominal data, and also for interval and ratio data that is not nor-
mally distributed or, in specific instances, does not exhibit equality
of variance. Examples for detecting a difference in variables are the
ManneWhitney U test (non-parametric equivalent of two-sample
t-test) and Wilcoxon matched pairs test (non-parametric equiva-
lent of paired t-test); for detecting correlation the Spearman’s rank
correlation coefficient can be applied. This group of tests requires
fewer assumptions to be met regarding the underlying population
distributions.19 In these tests the testing is carried out on ranked
data, even when e.g. interval data is analysed, which may lose
information about the magnitude of differences within the scale
data.2 Such tests are considered less powerful than parametric
testing, with the reduced power increasing the chance of a type II
error.13,20 Using the previous example of nephrotoxicity once more,

when the researcher decides, based on the outcome of a statistical
test, that there is no relationship between the incidence of contrast-
induced nephrotoxicity and the type of contrast agent when in fact
there is but the test did not detect this either because the sample
size is too small, the standard deviation of the sample data is too
large or the effect size is too small.

Application of inferential statistics

Inferential statistics are very useful for a magnitude of applica-
tions, experiments and investigations. In order to illustrate this we
can use an example of two participant groups that attended prev-
alent breast screening and have returned for incident screening,
compared with those that attended for prevalent breast screening
but did not attend incident screening. If there are differences
between survey scores, for answers to the question “was the
examination painful?”, in the mean score for each of these two
groups then there could potentially be three different explanations:

1) experimental manipulation caused a change in the phenomena
of interest. The patients who did not return for incident
screening felt that the breast examination was painful and
therefore they were reluctant to return for follow-up
examinations.

2) the samples come from different populations with an under-
lying difference causing the change in the phenomena of
interest. The patients who did not return may have been from
a different ethnic, cultural or social background from thosewho
did return for incident screening.

3) the samples are from the same population and the differences
in the mean occurred due to chance. This can be determined by
applying an appropriate statistical test.

Of the three explanations above, number one is the explanation
sought when conducting research e a true effect that links the
effect (reduced return for screening) with a cause (examination is
painful). Number two in the list can be caused by either
a confounder effect or selection bias. The above is an example of
a cohort study. In such studies and also in case-control studies and
clinical trials for instance, care has to be taken to ensure that two
unpaired groups are similar. There are various strategies to mini-
mise the risk of introducing confounding and/or bias.21 The last
explanation, chance, is controlled by applying p values and
ensuring that a study has sufficient power. Formore information on
power, please refer to the section on confidence interval and
sample size, as well as Altman and Bland’s statistics notes.12

Inferential statistics can be used to calculate the probability that
the populations are different and the experimental intervention did
have an effect. If a probability of 0.05 or 0.01 was observed whilst
there is a probability that the effect occurred due to chance, i.e. a 5%
or 1% probability respectively, then the results differed possibly due
to chance alone and not the experimental phenomenon, but clearly
it is more likely there is a relationship here. The p value will yield
this information where if the p value is 0.05 or less the difference
between the two groups is considered statistically significant thus
allowing the researcher to reject the null hypothesis and accept the
alternative hypothesis. If the p value is greater than 0.05 the null
hypothesis is accepted. The level of the p value used for probability
is chosen at the design stage of the study.

Choosing a statistical test

When selecting a statistical test, the appropriate test to deter-
mine the p value is based on:
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a) the level of the data e binary, nominal, ordinal, interval/ratio.
b) the number of different groups in the investigation.
c) whether the data was collected from independent groups i.e.

fifty patients who were hydrated peri-procedurally for MRI
contrast agent-enhanced examinations, and fifty other patients
who had not have the hydration regime prior to their contrast
agent-enhanced examinations.

d) the distribution of the data, i.e. are parametric assumptions
justified.4

e) if the test designed to investigate a correlation or difference.

Table 1 below is adapted from Edmondson to help researchers
decide on applying the appropriate test for studying differences
between samples.22 Please note the tests summarised here are in
essence for two sets of variables only. Examples are a group
receiving a placebo versus a group receiving a medicine, or the
volume of a tumour prior and following radiation therapy treat-
ment in a group of cancer patients. Where there are more than two
variables or the group/s have been subjected to more than two
treatments the analysis of variance ANOVA test will be more
appropriate. This would apply if, say, a placebo group is compared
to a group of patients receiving medicine A and a third group
receiving medicine B. Although Table 1 is made as complete as
possible, various different tests may be more appropriate depend-
ing on the sample type, size and characteristics. An overview of
what regression or correlation analysis method to apply with
certain types of data can be found elsewhere.23

There is a plethora of different statistical tests available to
analyse data. As a result it is difficult for inexperienced researchers
to decide which test is most appropriate. Because it is impossible to
cover all the different statistical tests, what follows is a description
of some of the commonly used tests.

Pearson product moment coefficient

This is a way to quantify the relationship between two variables
and it relates to ratio/interval data. It tests for correlation between
two samples not difference. Correlation coefficients are repre-
sented as r and can be positive meaning that in a related way that
one variable increases in relationship to another or negative, i.e.
that one variable decreases in relationship to another. They vary
from þ1, meaning a perfect positive relationship, to �1, which is
a perfect negative or inverse relationship. If the r value is 0, it
implies that the two variables are unrelated, i.e. variable B does not
change, in a predictable linear fashion, when variable A changes.
What is considered a strong or good correlation is a point of debate
and there are no set rules that determine the strength of a rela-
tionship, although suggestions have been made in the past.25 The
reason why there are no set rules here is because correlation

depends on the context and the sample size. As with other infer-
ential statistical tests, a p value can be produced to determine the
significance of an obtained correlation.

It is important though not to jump to the conclusions when
a correlation coefficient shows a relationship, even when shown to
be statistically significant. Association does not imply causation, as
other factors may be involved. One of the most recent and high-
profile examples of making unsupported conclusions is probably
the non-causal relationship between the MMR vaccine and
autism.26 There is a similar correlation test for when at least one of
the data sets is ordinal, called Spearman’s rho.

The t-test

This is a parametric test to compare the means of two samples
which can be related e.g. the same group of patients is used in
a cross-over study in which pain is measured before and after
a treatment, using an analogue visual pain rating scale, or they can
be unrelated samples e.g. where one sample of patients is fully
briefed about a diagnostic examination, including being given
a printed fact sheet whilst, the second is not and subsequently the
patients in these samples are asked how painful the examination
was, again using an analogue visual pain rating scale. The t-test
requires the input of interval/ratio data and the assumption that the
data is suitable to having parametric statistics data (see above)
applied to it, must be satisfied. The computed t value for a test will
give the p value if you are using one of the common packages for
statistics. This can then be compared with the arbitrary threshold p
value set to consider an outcome statistically significant. Although
the software handles many things on behalf of the researcher, what
does have to be put in manually is whether the t-test should be
one-sided or two-sided. A simplified way of explaining the differ-
ence is that one-sided is only used if one knows in which direction
the effect of an intervention or comparison is likely to go. For
example, if the introduction of a diagnostic test is certain to
improve detection rates. Often though, it is not known in what
direction an experiment will movee that is why the experiment or
study is done in the first place. In such a case, and if you are
uncertain, the t-test should be two-sided. The chance of the
occurrence of a negative of positive effect is taken into account.

Chi squared test for independence

This test for independence, also known as Pearson’s Chi squared
test, shows whether there is a relationship between two variables
and is normally used for data suitable for non-parametric statistical
testing. A few important assumptions for this test to be suitable for
testing data are that the sampling is random, the sample size is
large enough and the observations are independent. Frequency

Table 1
Types of statistical tests depending on the type of data, number of samples and distribution of data.

Type of data Number of samples Statistical test

Binary One or paired McNemar’s test
Two independent samples Chi squared test or Odds ratio

Nominal One or paired Stuart test
Two independent samples Chi squared test

Ordinal One or paired Wilcoxon test
Two independent samples ManneWhitney U-test

Interval/ratio One or paired Wilcoxon test (non-normal)
Paired t-test (normal)

Two independent samples ManneWhitney U-test (non-normal)
Unpaired t-testa (normal)

a In addition to testing the distribution of the data, the equivalence of variance should also be assessed. The outcome of these assessments will influence the choice of t-test
applied e with an unequal variance the unequal variance t-test should be applied.24
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counts of data, let’s say a comparison of the number of women and
men being who need anMRI scan but have either claustrophobia or
not, can be analysed to see if the observed numbers differ signifi-
cantly (arbitrary level would be p value of 0.05) from the expected
frequencies. The computer will calculate the expected frequencies
and subsequently a chi squared value c2 which must be equal to or
exceed the critical value deemed statistically significant.22 The
formula for this is: (observed frequency���expected frequency)2/
expected frequency. In order to obtain the p value for a Chi squared
test, the Chi squared statistic can be looked up and compared to p
values in a table. The degree of freedom applicable to the data is
important in performing this test; this is calculated using the
formula (r���1)(c���1). For the example above there would two
columns (male, female) and two rows (claustrophobic, not claus-
trophobic), hence one degree of freedom (2���1)(2���1).

Notes regarding statistical tests

Whilst several tests are mentioned in this article it is beyond the
scope of the article to describe them all. However, the background
information to inferential statistics and Table 1 should help the
reader choose the appropriate statistical test for difference when
the experiment involves two different samples only.

Calculating a test result is rarely undertaken by hand nowadays,
and instead is done using statistical packages such as Excel, Mini-
tab, Supastat and the comprehensive and commonly used SPSS
(Statistical Package for Social Sciences) some of which can easily be
downloaded.

Checklist for understanding inferential statistics or choosing
what sort of data to collect

� Are statistics performed just to describe the data e if so, only
descriptive statistics should be used

� Is the data suitable for parametric or non-parametric statistical
testing?

� Are you looking for a test to show correlation or difference?
These will require different tests from those testing for
a difference between groups, interventions or treatments.

� Are statistics used to draw inferences from the data? If so,
descriptive statistics alone will be inadequate

� Are the variables discrete or continuous?
� Is the data binary, nominal, ordinal or ratio/interval data?
� What p value or confidence interval needs to be achieved in
order to apply a study’s findings to the wider population?

� Does the data consist of the same sample of subjects e.g. pre
and post mammography (dependent/paired groups) or is the
data from independent/unpaired groups

� What is the p value (type I error) set for declaring statistical
significance e usually 0.05 or 0.01 e and is this quoted with
a confidence interval rather than on its own?

� What power (1 e type II error) should be achieved? Usually
this ranges from 0.80 to 0.99 depending on the situation.

� Is the data normally distributed or not?
� How many groups will be analysed c.q. compared with each
other?

Conclusion

Inferential statistics provide a way of inferring from the data
trends that can be applied to a wider sample. They need to be
presented clearly in a clinically relevant way in order that it can be
assimilated by readers, such that it can be used to evidence base
their practice, narrowing the theory-practice gap. Statistics can be

difficult to apply, especially to those without experience, where the
selection and undertaking of the appropriate statistical test may
appear daunting. It is essential that the type of data collected and its
analysis is appropriate so that the research question can be
answered. However, if the article above is read, the checklist is used
as guidance and some of the references are consulted, the under-
taking of statistics should be more successful and reading a scien-
tific paper may be made less tasking.
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Glossary

Continuous variables: the data represents an underlying continuumwhere there are
potentially an infinite number of values (such as weight, length and volume).

Descriptive statistics: statistics that can be used descriptively to illustrate the char-
acteristics of a group of observations i.e. the raw data. Often this includes
determining a measure of average (central tendency) and spread (dispersion);
the mode, median or mean of a data set and the frequency distribution.

Discrete variables: when the data is classified into discrete non-overlapping vari-
ables, or whole numbers. An example is the number of ultrasound scans
a person has undergone.

Data: numbers or measurements collected as a result of measurements. They could
be counts or frequencies or actual numerical values or scores.

Likert scale: is a scale commonly used in questionnaires, and is the most widely used
scale in survey research. It is used for ordered category data. When responding
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to a Likert questionnaire item, respondents specify their level of agreement to
a statement. The scale is named after Rensis Likert who published a report
describing its use.15

Normal distribution: when a large number of measurements are made at random of
one particular variable, the results usually fall into a pattern. Most of the
measurements will lie close to the mean value, with few values lying at the
extremes. When a frequency distribution is plotted a familiar bell-shaped curve
is produced which represents a normal or Gaussian distribution. There are
a number of tests that can be used if data exhibits a normal distribution,
including Spearman’s rho, Pearson’s product moment, binomial sign test, Wil-
coxon signed ranks, the t-test, Chi squared, ManneWhitney, Analysis of
Variance.

Null hypothesis: this hypothesis proposes that in the population there is no differ-
ence when comparing two or more treatments or interventions in a study. It
assumes that any difference or relationship found between two sets of data is
not significant, and can thus be expressed by chance. If a statistically significant
difference is observed between e.g. two interventions then the null hypothesis
can be rejected.

Probability: the probability or p of an event happening is expressed as a decimal
number from 1 to 0 e.g. the probability of a coin falling heads is one out of two
p ¼ 0.5.

Inferential statistics: statistics that can be used to infer from the sample group
generalisations that can be applied to a wider population.

Interval data: is stronger data than nominal or ordinal data. It can be achieved by
the use of a calibrated scale to provide quantitative measurements. The
difference between interval and ratio data is that ratio data has a true zero,
thus interval data is weaker data than ratio data. An example of interval data is
temperature measured in Celcius, where the zero is an arbitrary measurement
on the scale.

Nominal data: is the least robust data which categorizes, but does not hierarchically
rank data into mutually exclusive categories (eye colour, for instance).

Non-parametric tests: are used for ordinal or nominal data e.g. theWilcoxonmatched
pairs test and the chi squared test.

Ordinal data: is where the data has a clear order or hierarchy but not on a calibrated
scale. The Likert scale is an example of this type of data.

Parametric tests: are selected for data that is normally distributed.

Ratio data: is the strongest data, and has a true zero value. It can be achieved by the
use of a calibrated scale to provide quantitative measurements. Height and
length are examples of ratio data; if something is twice as long then this is
measurable and it has a meaning.

Related samples: these are where data is collected from the samples before and after
the treatment, such as the level of pain a patient has before and after a clinical
intervention. This is also called matched/paired data.

Significance: an event is said to be significant if the probability of it occurring purely
by chance is low.

Standard deviation (SD): a measurement of the spread of data around the mean of
a population, a data set, or sample. It is the square root of the mean variance and
is expressed in the same unit as the mean. A low standard deviation indicates
that all the scores or measures tend to be more similar to each other and
therefore to the mean. A high standard deviation indicates the opposite, where
scores or measurements differ more and are further spread from the mean.
Typically, when a large sample is used, two thirds of data lie within 1 SD of the
mean and 95% of data lie within 2 SD of the mean.

Standard error (SE): estimated standard deviation of a statistic, most often the
sample mean (then known as SEM); this is a hypothetical figure. For example,
the samplemean is the usual estimator of a populationmean. The standard error
gives an indication of how likely it is for the same mean to be obtained if the
experiment was repeated. The 95% confidence interval (CI) can be calculated
with the formula: 95% CI ¼ mean � 1.96*SE.

Statistical significance: the likelihood or probability that a result or finding is caused
by something else than chance only, thereby allowing rejection of the null
hypothesis. Often, if the probability of it occurring by chance is less than one in
twenty, i.e. p < 0.05, this is considered statistically significant.

Type I errors: occur when a researcher claims a result to be significant when the
differences have occurred due to random events. The null hypothesis is rejected
when it is actually true.

Type II errors: occur when the null hypothesis is not rejected, when it is actually false.
Unrelated samples: compares two samples that are fundamentally different from

each other. For example, where one sample of patients is fully briefed about
their illness including being given a printed fact sheet whilst the second is not.
These are also known as independent samples.

Variable: a characteristic which can take different values, e.g. sex, weight.
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